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Abstract
There is an emerging interest in brain functional connectivity (FC) based on functional Magnetic Resonance

Imaging in Alzheimer’s disease (AD) studies. The complex and high-dimensional structure of FC makes it
challenging to explore the association between altered connectivity and AD susceptibility. We develop a pipeline
to refine FC as proper covariates in a penalized logistic regression model and classify normal and AD susceptible
groups. Three different quantification methods are proposed for FC refinement. One of the methods is dimension
reduction based on common component analysis (CCA), which is employed to address the limitations of the
other methods. We applied the proposed pipeline to the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
data and deduced pathogenic FC biomarkers associated with AD susceptibility. The refined FC biomarkers were
related to brain regions for cognition, stimuli processing, and sensorimotor skills. We also demonstrated that a
model using CCA performed better than others in terms of classification performance and goodness-of-fit.

Keywords: resting-state functional magnetic resonance imaging, penalized logistic regression,
common component analysis, Alzheimers disease, mild cognitive impairment

1. Introduction
Alzheimer’s disease (AD) is a neurodegenerative disease that affects the elderly’s health and places a
huge burden on families and society. Its pathophysiological process is thought to begin many years
before diagnosis (Morris, 2005). The preclinical phase of AD provides critical opportunities for early
diagnosis that could reduce healthcare costs for both patients and governments. If 80–100% of AD
patients were diagnosed at an early stage, it would yield a total cumulative savings of $7 trillion to
$7.9 trillion in medical and long-term care costs (Alzheimer’s Association, 2019). Early diagnosed
patients could also prepare legal and financial plans while cognitively capable of making those critical
decisions. Furthermore, early diagnosis could help the patients to lessen anxieties about their cognitive
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and behavioral symptoms by being aware of disease progression. Therefore, there have been many
studies to detect AD at mild cognitive impairment (MCI) (Davatzikos et al., 2011; Moradi et al., 2015;
Sperling et al., 2011), which refers to an intermediate stage between the expected cognitive decline of
normal aging and AD (Ganguli et al., 2004).

This study helps establish promising biomarkers that contribute to the classification of MCI pa-
tients and cognitively normal elderly. Patients with MCI have a significantly higher likelihood to
progress to probable AD relative to unimpaired individuals (Ganguli et al., 2004), with a conversion
rate of 10-15% per year (Petersen et al., 1999) comparing to normal elderly: about 1–2% annually
(Bischkopf et al., 2002). Especially if memory loss is the predominant symptom, patients with MCI
have an increased risk of developing AD (Dubois and Albert, 2004; Han et al., 2012). Observation
of such symptoms means that significant neurodegeneration has already occurred in the brain of the
patients, either anatomically or functionally (Wee et al., 2013; Zang et al., 2012). However, there
are no pharmacological treatments capable of delaying the long-term progression of MCI to demen-
tia, and it is not recommended the use of medicines for MCI-treatment (Feldman and Jacova, 2005;
Chertkow, 2008). MCI patients also show different cognitive decline rates, and even some never con-
vert to AD due to heterogeneity of the etiology for MCI (Grand et al., 2011). Thus, earlier detection
of patients who are likely to convert from MCI to probable AD is critical to warn potential patients
and guide them through appropriate treatment for delaying or preventing the onset of AD. AD could
be diagnosed earlier by monitoring biomarkers associated with the development of MCI (compared
to monitoring risk factors for AD) from cognitively normal elderly who have no apparent symptoms,
but a higher risk of AD (Shankle et al., 2005). Furthermore, biomarkers could provide insight into the
mechanism underlying AD pathogenesis.

Biomarkers from brain imaging methods such as computed tomography (CT), magnetic resonance
imaging (MRI), and position emission tomography (PET) have been used in the study of AD over
the past decade. For more details about these methods, refer to (Johnson et al., 2012). Among
the methods, functional MRI (fMRI), which reflects the spontaneous blood oxygen level-dependent
(BOLD) signal fluctuations, is increasingly being used to investigate functional changes between brain
regions on AD and MCI patients (Allen et al., 2007; Greicius et al., 2004). Brain regions tend to be
temporally correlated at resting state because they are functionally related or work together during a
cognitive task (Beckmann et al., 2005). In fMRI, functional connectivity (FC) describes the functional
networks of the brain. It indicates temporal connection of brain activity in spatially distinct brain
regions (Cordes et al., 2001) by indexing changes in temporal patterns of the neural activity either in
rest or task condition (Hutchison et al., 2013).

Resting-state fMRI (rs-fMRI) shows the baseline BOLD variance using resting-state FC. Obser-
vation of the resting-state FC has reported all across the spectrum from AD (Wang et al., 2007; Gili et
al., 2011) to MCI (Bai et al., 2009; Petrella et al., 2011), to normal control (NC) (Damoiseaux et al.,
2008). By the time AD symptoms develop, widespread FC changes are present throughout the brain
(Wang et al., 2007). Similarly, resting-state functional brain networks of MCI also show reduced con-
nection strength and efficiency (Wang et al., 2013; Drzezga et al., 2011). For example, the network
node attributes in the prefrontal cortex, insula, and white matter connectivity in the parietal cortex are
distinct between normal elderly and MCI patients (Wee et al., 2012). MCI patients lso have decreased
connections between the hippocampus and prefrontal gyrus, temporal gyrus, and parietal gyrus during
an episodic memory task (Bai et al., 2009). Hence, the resting-state FCs, as valid biomarkers, could
provide unmistakable evidence for disruptive and abnormal brain functional differences between NC
and MCI patients.

We focus on the resting-state FC-based biomarkers associated with the classification of MCI and
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cognitively normal. Logistic regression is used for the classification, since it provides a the straight-
forward interpretation of the coefficients, unlike other machine learning methods. The most common
way of estimating FC is Pearson’s correlation coefficients between two BOLD signals of brain regions.
In this study, the brain is segmented into 116 regions of interests (ROIs) by an anatomical parcellation
on the brain with the automated anatomical labeling (AAL) template (Tzourio-Mazoyer et al., 2002).
The follow-up question is how to quantify the FC as proper covariates for the regression model. One
simple way is to half-vectorize each FC matrix, which results in 116 × (116 − 1)/2 unique elements
for each subject. Therefore, the number of variables initially available is too many, causing a high-
dimensionality issue. One popular way for dimension reduction is to calculate descriptive statistics
for FC based on graph theory, which can assess the properties of brain regions and functional connec-
tions (Salvador et al., 2005). However, this approach has two major limitations. One is that it does not
specify brain regions with different connectivity between patient groups, while it enables exploring
FC’s overall organization. Another limitation is that it summarizes the FC to a very high degree; it
might detect confounders such as systematic group differences in head motion or heart rate instead of
genuine differences in the groups (Smith et al., 2013). To address those limitations, we also employ
the common component analysis (CCA) for dimension reduction (Wang et al., 2011). It is recently
proposed to decompose multiple symmetric matrices such as resting-state FCs. This method can be
seen as an extension of the principal component analysis in that it pursues a new coordinate system,
which is assumed to be common for all the matrices in the CCA.

Consequently, in order to use FC as covariates in a statistical model, we consider the methods
mentioned above: (1) half-vectorization of the Pearson’s correlation matrices, (2) the graph-theory
based descriptive measures, and (3) half-vectorization of the dimension-reduced correlation matri-
ces by CCA. We acquire three different datasets from the same rs-fMRI data as a result. However,
the three FC datasets are still high dimensional, which is not suitable for a classic logistic regres-
sion model. That what, penalization using the elastic net penalty is employed to address the high-
dimensionality and multicollinearity by compromising between Lasso and Ridge. We used leave-
one-out cross-validation (LOOCV) to estimate the area under the curve (AUC) to select proper tuning
parameters of the elastic net penalty. The AUC and deviance of a selected optimum model were also
employed to assess classification performance and goodness-of-fit of the three datasets.

The goals of this paper are : (1) to establish a pipeline to incorporate functional connectivity as
covariates in a logistic regression model, (2) to compare the performance of models using the three
datasets, and (3) to investigate the effects of the FC-based biomarkers. It could provide insight into
the relationship with the classification of MCI from NC. The rest of this paper is organized as follows.
Section 2 provides detailed descriptions of ADNI data regarding rs-fMRI and data-preprocessing
procedures. Three quantification methods for FC will be discussed in Section 3. They include two
traditional treatments for FC’s high-dimensionality and the CCA that have not received adequate
attention. In Section 4, we propose a pipeline for modeling a Binary Response with FC Covariates
by using the CCA. The section briefly explains penalized logistic regression, a core framework of
the pipeline, and provides the modeling pipeline with graphic representation. Section 5 shows the
performance comparison among the three models using and findings from biomarkers highlighted
from regression models. Finally, Section 6 ties up these together and concludes the paper. Also, since
there are many technical terms, we list their abbreviations in Appendix A to improve the readability.

2. Materials
2.1. Alzheimer’s disease neuroimaging initiative (ADNI)
This paper is motivated by the ADNI database. The ADNI was launched in 2003 by the National



606 Jae-Hwan Jung, Seong-Jin Ji, Hongtu Zhu, Joseph G. Ibrahim, Yong Fan, Eunjee Lee

Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration,
the National Institute on Aging, private pharmaceutical companies and non-profit organizations, as
a $60 million, 5-year public-private partnership (Martı́nez-Murcia et al., 2013). Michael W. Weiner,
MD, VA Medical Center, and the University of California-San Francisco is the Principal Investigator
of this initiative. ADNI’s primary goal is to test if brain imaging data like serial MRI, PET, other
biological markers, and clinical and neuropsychological assessment can be combined to measure the
progression of MCI and early AD. All subjects were recruited from over 50 sites across the U.S.
and Canada (http://www.adni-info.org/). The demographic information and the rs-fMRI data of 120
subjects were obtained from ADNI’s publicly available database (http://adni.loni.usc.edu/ADNI).

2.2. Demographic and clinical variables

Many demographic factors have been known to be associated with the progression of AD, so they
have been used as covariates in prior studies to predict conversion from MCI to AD including Age,
Education length, ADAS-cog score, Gender, and APOE-ϵ4. See the references therein for more
details.

Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) (Mohs, 1983) is a clin-
ical and cognitive assessment score from the ADNI dataset that is potentially useful for predicting
MCI-to-AD conversion. A higher ADAS score means a greater degree of cognitive impairment and
a higher probability of being MCI. Also, the apolipoprotein E (APOE) ϵ4, especially its homozygos-
ity, is the most potent genetic risk factor for AD for those between 40 and 90 years of age (Farrer et
al., 1997). Carriers of APOE-ϵ4 show worse cognitive performance and more significant cognitive
decline over time than non-carriers in elderly patients without dementia (Small et al., 1999).

Table 1 shows a summary of participant demographics. 53 NC (24 males/29 females) and 67 MCI
subjects (36 males/31 females) were obtained from the ADNI dataset. In the table, mean and standard
error were presented for continuous variables such as Age, Education length, and ADAS-cog. The
unit of Age and Education length is a year. For example, the mean of Age in terms of year for MCI and
NC groups was 71.531 and 72.955, with standard error 0.872 and 0.825, respectively. The count and
the percentage of each category were presented for categorical variables such as Gender and APOE-
ϵ4. Though we treated APOE-ϵ4 as a continuous covariate in models, they are often categorized into
0 for homozygous reference allele, 1 for heterozygotes, and 2 for homozygous for alternative allele.
Thus, the mean and standard error refer to total APOE-ϵ4, and the proportion refers to each category
of APOE-ϵ4.

2.3. Preprocessing of fMRI

The rs-fMRI data, which were acquired using a 3.0 Tesla Philips Medical Systems during the task-free
scans, was downloaded in original Directed Components (DICOM) format from the ADNI website.
The scanning protocol for the rs-fMRI of all subjects was depicted as follows: flip angle = 80.0
degrees; manufacturing model=Intera; echo time (TE) = 30.001 ms; repetition time (TR) = 3000.0
ms; pixel spacing size = 3.3125 × 3.3125; slice thickness = 3.313; slices = 6720.0; matrix size
= 64 × 64; pulse sequence = GR; the number of anatomical volumes = 140. Detailed acquisition
parameters could be referred at the ADNI web site (http://www.adni-info.org/).

For the rs-fMRI data preprocessing, we used SPM8 (https://www.fil.ion.ucl.ac.uk/spm/). The
details are: (1) removing the first 10 image volumes of functional time series manually to ensure
magnetization equilibrium. (2) slice acquisition timing was corrected for each volume, followed by
head-motion correction (i.e., realignment) with rigid-body transformation. (3) intensity scaling of
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Table 1: Demographic information

Demographics Total NC MCI
Age 72.160 ± 0.609 72.955 ± 0.825 71.531 ± 0.872

Education length 16.250 ± 0.234 16.585 ± 0.328 15.985 ± 0.328
ADAS-cog score 7.542 ± 0.369 5.566 ± 0.362 9.104 ± 0.523

Gender Male 60 (50.00%) 24 (45.28%) 36 (53.73%)
Female 60 (50.00%) 29 (54.72%) 31 (46.27%)

APOE-ϵ4

Total 0.517 ± 0.059 0.377 ± 0.072 0.627 ± 0.087
0 68 (56.70%) 34 (64.20%) 34 (50.70%)
1 42 (35.00%) 18 (34.00%) 24 (35.80%)
2 10 (8.30%) 1 (1.90%) 9 (13.40%)

each fMRI scan after motion correction to yield a whole-brain mean value of 10000, (4) temporally
band-pass filtering with low-frequency range (0.01–0.08Hz) to remove effects of very low-frequency
drift and high-frequency noise, (5) regressing out a set of nuisance signals, including the signal av-
eraged over the white matter, signal averaged over the cerebrospinal fluid, global signal averaged
over the whole brain, and six motion parameters, and (6) nonlinear normalization to the Montreal
Neurological Institute space and spatially smoothing using Gaussian kernel of 6mm full-width.

3. Quantification methods for functional connectivity

3.1. Low-order functional network: LON

The preprocessed BOLD time-series signals of all voxels were partitioned into 116 ROIs using the
AAL template atlas (Tzourio-Mazoyer et al., 2002). ri ∈ RT denotes the averaged time series of all
voxels belonging to the ith ROI, where T is the total number time points of BOLD signals. The AFNI
package was used for those calculations (Cox, 1996). A commonly used method for quantifying the
FC is the Pearson correlation (Smith et al., 2013). The correlation-based FC matrix for the kth subject
is defined below :

C(k) =
[
ci j

]
1≤i, j≤V

=
[
corr

(
ri, r j

) ]
1≤i, j≤V

, (3.1)

where V is the number of ROIs and corr(ri, r j) denotes the Pearson’s correlation between the ith ROI
(ri) and the jth ROI (r j). V = 116 for the AAL template. Additionally, the resulting correlation
coefficients were transformed by Fisher’s z-transformation denoted by C̃(k). This method can be
considered a low-order representation of the functional interaction since the relationship investigated
is only between two ROIs. Here, X(L) is a n× V(V − 1)/2 data matrix, whose kth row is the vectorized
upper triangular parts of C̃(k). This whole procedure will be called low-order functional network
(LON). The correlation coefficient is the simplest way to quantify the FC; however, this method
usually suffers the curse of dimensionality. The number of X(L) columns is (116 × 115)/2 with the
AAL template, which is larger than the number of our subjects, 120. Moreover, this approach only
considers marginal linear independence and dependence between ROIs without considering complex
and time-varying interaction among brain regions.

3.2. Graph-theory-based metrics: METRIC

The FC can be treated as a weighted graph based on the graph theory: a specific ROI (i.e., brain
region) corresponds to a node, and an edge is used to characterize the pairwise FC between the
ROIs. X(M) is a design matrix consisting of descriptive metrics for weighted graphs derived from the
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ROI-based functional connectivity matrices, C(k). The correlation coefficients denote edge weights
in calculating metrics. Among many measures, we calculated three popular summary measures:
diameter (Weisstein, 2003), strength (Barrat et al., 2004), and PageRank (Brin and Page, 1998).
The integration of those three measures resulted in the data matrix X(M) with n × (2V + 1), where
2V + 1 = 1(graph diameter) + V(strength) + V(PageRank) for each subject. This approach will be
called METRIC in this paper. However, this approach has two major limitations. One is that it does
not specify which brain regions have different connectivity between patient groups, while it enables
exploring the overall organization of FC. Another limitation is that it summarizes the FC to a very
high degree; therefore, it might detect confounding variables such as systematic group differences
due to head motion or heart rate instead of genuine group differences (Smith et al., 2013). Moreover,
Tijms et al. (2013) reports that graph theory application to rs-fMRI data in AD showed conflicting
results.

3.3. Common component analysis: DFC

Another recently proposed approach is the common component analysis (Wang et al., 2011) that
can provide insight into the complex organization of brain networks while conducting a dimension
reduction of connectivity. Let Li = [Li(g,g′)]g,g′=1,...,V be the rs-fMRI connectivity matrix of the ith

subject, where g is a vertex or an ROI, and V is the total number of vertices or ROIs. It is supposed
that Li is symmetric without loss of generality, that is, Li(g,g′) = Li(g′,g) holds for all g, g′ = 1, . . . ,V .
The common component model assumes that

Li(g,g′) =

R∑
r=1

R∑
s=1

γr,gλi(r,s)γs,g′ + ϵi(g,g′), (3.2)

where λi(r,s) is a subject-specific coefficient that can be non-zero even for r , s and ϵi(g,g′) is a mea-
surement error. In addition, G = [γ1, . . . ,γR] as a V × R orthogonal matrix is a common eigenmap
across all subjects, where γs = (γs,1, γs,2, . . . , γs,V )T for s = 1, . . . ,R. The subject-specific matrix
Λi = [λi(r,s)]r,s=1,...,R maintains an intrinsic network structure in the low-dimensional space spanned by
the columns of G. Equation (3.2) can be written in a matrix form as:

Li = GΛiGT + ϵϵϵ i, where ϵϵϵ i =
[
ϵi(g,g′)

]
g,g′=1,...,V

. (3.3)

The unknown parameter matrices G and Λi can be estimated by minimizing the Frobenius norm
of Li −GΛΛΛiGT by using iterative optimization steps. This optimization problem is solved by adapting
low-rank approximation techniques proposed by Ye (2005). In detail, we consider the following
optimization problem

min
G,Λi

n∑
i=1

∣∣∣∣∣∣Li −GΛiGT
∣∣∣∣∣∣2

F such that GT G = IR, (3.4)

where ||A||2F =
√

tr(AAT ) is the Frobenius norm of A and tr(A) is its trace. Then,

Λ̂ΛΛi = ĜLiĜT ,

where the eigenmap G can be estimated from the following iterative optimization steps. Under Λi =
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GLiGT , the above minimizing problem is equivalent to maximizing

n∑
i=1

∣∣∣∣∣∣GT LiG
∣∣∣∣∣∣2

F =

n∑
i=1

tr
(
GT LiGGT LiG

)
≈

n∑
i=1

tr
(
GT LiG0G0G0G0

T LiG
)
,

where G0 is the G matrix from the previous iteration. Then G can be estimated by the following
iterative steps:

1. Let G0 be the G matrix from the previous iteration.

2. Calculate QQQ =
∑n

i=1 LiG0G0
T Li.

3. Compute the R eigenvectors {γi}Ri=1 of QQQ corresponding to the largest R eigenvalues.

4. Set G = [γ1,γ2, . . . ,γR].

5. Repeat the above iterations until it converges.

6. Calculate Λ̂ΛΛi = ĜLiĜT for i = 1, . . . , n.

We half-vectorize Λi, dimension-reduced connectivity, into (λi(1,1), λi(2,1), λi(2,2), . . . , λi(R,R)) to use
it as covariates in the regression model. Let this quantification procedure be called Dimension-reduced
Functional Connectivity (DFC). The resulting data X(D) is a n × R(R + 1)/2 matrix, whose ith row is
(λi(1,1), λi(2,1), λi(2,2), . . . , λi(R,R)). One of our goals is to show that a classification model using X(D) is
more promising in predictive performance and interpretability than the model using X(L) or X(M).

4. Penalized logistic regression with functional connectivity covariates

We propose a modeling pipeline for a binary response with FC covariates. Logistic regression is
widely used in this case, which is not suitable for the FC data due to its complex matrix structure. The
functional connectivity data is refined as appropriate covariates by applying for each of the three quan-
tification methods, LON, METRIC, and DFC. Since the refined covariates are still high-dimensional,
penalized logistic regression is employed as a core model in our modeling strategy to address the
issue. We summarize the whole procedure as a pipeline for the FC analysis in Subsection 4.2.

4.1. Logistic regression with elastic net penalty

Assume that we have n observations and p explanatory variables. Let yi ∈ {0, 1} be the response
variable value for the ith observation. In our study, 1 represents a MCI patient and 0 represents a NC

subject. xi =

(
1,

(
x(1)

i

)T
,
(
x(2)

i

)T
)T

is the ith vector of design matrix X, where x(1)
i = (xi1, . . . , xiq)T and

x(2)
i = (xi(q+1), . . . , xip)T indicate control variables and the FC biomarkers respectively. q denotes the

number of demographic variables and (p − q) denotes the number of FC biomarkers.
The design matrix X can be varied by the FC quantification method such as

[
X(1) X(L)

]
,
[
X(1) X(M)

]
,

or
[
X(1) X(D)

]
, where X(1) =

[
x(1)

1 x(1)
2 · · · x(1)

n

]T
. Accordingly, β(1) =

(
β1, . . . , βq

)T and β(2) =
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(
βq+1, . . . , βp

)T are coefficient vectors for control variables and the FC biomarkers respectively. Then,
the response variable is related to the explanatory variables by

logit [π (xi)] = β0 +
(
x(1)

i

)T
β(1) +

(
x(2)

i

)T
β(2) = xT

i β, i = 1, . . . , n, (4.1)

where π (xi) = P (yi = 1|xi) and β =
(
β0,β

T
(1),β

T
(2)

)T
is a (p + 1) × 1 coefficient vector. Then, the

log-likelihood function is defined as

ℓ(β) =
n∑

i=1

[
yi log(π(xi)) + (1 − yi) log(1 − π(xi))

]
. (4.2)

The penalized logistic regression adds a non-negative penalty term to the log-likelihood function to
solve constrained maximization for ℓ(β). Lasso with a L1-penalty (Tibshirani, 1996) and Ridge with
a L2-penalty (Hoerl and Kennard, 1970) are widely used. Ridge regression addresses collinearity
within explanatory variables, and Lasso efficiently reduces the dimensionality by shrinking some of
the regression coefficients to zero. An elastic net penalty (Zou and Hastie, 2005) is constructed to
deal with the drawbacks of Lasso and Ridge. In the logistic elastic net regression, β can estimated by
maximizing the penalized likelihood,

β̂Elastic = argmax
βββ∈Rp+1

[
ℓ (β) − λPα

(
β(2)

)]
=

(
β̂0, β̂

T
(1), β̂

T
(2)

)T
, (4.3)

where

Pα

(
β(2)

)
=

p∑
j=q+1

(
1
2

(1 − α) β2
j + α

∣∣∣β j

∣∣∣), (0 ≤ α ≤ 1) . (4.4)

For the model estimation, we used the R glmnet package that applies the coordinate descent algorithm
for the maximization (Friedman et al., 2010).

Equation (4.3) shoes that an elastic net estimator depends on non-negative tuning parameters, λ
and α, which leads to a penalized logistic regression solution. One of our goals is to investigate and
control the effects of the demographic and clinical variables mentioned in Section 2.2; therfore, we
impose the penalty term only on the FC biomarkers. We estimated AUC by leave-one-out cross-
validation (LOOCV) and used it to adjust the tuning parameters to proper values. That is, we choose
an (α, λ) pair that shows the highest AUC value. The AUC and a deviance test are used to evaluate the
model.

4.2. Modeling pipeline

Figure 1 shows the pipeline of the modeling framework. It describes the following steps:

(1) Quantification of the FC data: This quantification includes simple vectorization (LON), feature
extraction based on graph theory (METRIC), and dimension reduction (DFC) for the FC data.
Hence, three different biomarkers are refined and denoted by X(L), X(M), and X(D), respectively.

(2) Penalized logistic regression: After the first step, there are possibly more variables than the sample
size. Therefore, we conduct penalized logistic regression using the elastic net penalty, where
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Figure 1: Pipeline of the penalized logistic regression using FC data for classifying MCI and NC.

the refined biomarkers (X(L), X(M), or X(D)) are penalized except for demographics. The tuning
parameters, α and λ, for the penalty are chosen by comparing their LOOCV-AUC values.

(3) Model assessment: Each model is assessed by LOOCV-AUC and the deviance test. One can
conclude which quantification method shows better performance than the others in terms of clas-
sification performance and goodness-of-fit.

This pipeline can be applied to any classification problem, where explanatory variables are symmetric
matrices. It can also be easily adapted to generalized linear models.

5. Results

We included Age, Education length, ADAS-cog score, Gender, and APOE-ϵ4 as control variables
in the model (q = 5). After executing the modeling pipeline, we obtained three sets of refined FC
biomarkers, X(L), X(M), and X(D). The estimated models for each FC quantification method are called
MLON, MMETRIC, and MDFC. Since the tuning by LOOCV might not necessarily give the most pre-
dictive model, in particular for logistic regression, we also considered to restrict penalized logistic
regression models for LON, METRIC, and DFC to have the same number of covariates by manually
tuning λ and α. This strategy would help compare the predictive performance of three quantification
methods in various aspects. We manually selected the α and λ values so that the final model had the
predetermined number of covariates (e.g., 3 or 5) with the highest LOOCV-AUC. The models with 3
and 5 covariates are denoted by M(3)

LON, M(3)
METRIC, M(3)

DFC, M(5)
LON, M(5)

METRIC, and M(5)
DFC for each quantifi-

cation method. We used 101 λ values from 0 to 10 and 6 α values from 0 to 1 to search for candidate
ranges for λ and α. After the rough search, we considered 101 λ values from 0 to 1 and 101 α values
from 0 to 1 to find the optimal parameters by LOOCV.

The results of the current paper can be divided into three parts. Section 5.1 presents the results of
the classification between NC and MCI. By computing AUC and deviance, we assess the classification
performance and the goodness-of-fit for each FC quantification method. In Section 5.2, we explore
selected biomarkers by penalized logistic regression. We will describe the selected biomarkers from
MDFC in detail since the implementation of DFC is a primary purpose. In Section 5.3, we investigate
the estimated effects for demographic and clinical variables.
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Figure 2: The receiver operating characteristic (ROC) curves of the three classification models.

Table 2: Model assessment

Tuning method Model AUC(%) Deviance df p-value

LOOCV
MLON 69.22 140.36 113 0.0414∗

MMETRIC 75.81 129.15 113 0.1421
MDFC 78.26 120.15 111 0.2603

3 covariates
M(3)

LON 68.68 138.64 111 0.0389∗

M(3)
METRIC 75.47 127.27 111 0.1385

M(3)
DFC 78.26 120.15 111 0.2603

5 covariates
M(5)

LON 67.33 137.95 109 0.0319∗

M(5)
METRIC 75.08 121.94 109 0.1871

M(5)
DFC 77.76 119.90 109 0.2238

5.1. Model assessment

Figure 2 shows the receiver operating characteristic (ROC) curve for each model and Table 2 sum-
marizes the assessment results. The first three rows of the table represent the results when the tuning
has been done by LOOCV. The next three rows show performance of the manually tuned model with
three covariates. Results for five covariates are summarized in the last three rows. The AUC of MLON
was 69.22%, where α = 0.700 and λ = 0.180. The AUC of MMETRIC was 75.81%, where α = 0.850
and λ = 0.091. Lastly, the AUC of MDFC was 78.26%, where α = 1.000 and λ = 0.067, showing
better performance than the others. The ROC curve of MDFC was above that of MLON, while curves
of MDFC and MMETRIC crossed at specificity = 0.83. MDFC performed better than MMETRIC, when
specificity was achieved within a moderate level (≤ 0.83). However, its performance was slightly
worse when the specificity was higher than 0.83. In this study, sensitivity is more important than
specificity, considering that the elderly susceptible to AD are needed to be monitored instead of being
missed (Wollman and Prohovnik, 2003). Therefore, those ROC curves showed that the MDFC per-
formed better than MLON and MMETRIC. We also conducted the deviance test and obtained the results
that MMETRIC(p = 0.14) and MDFC(p = 0.26) fitted the data well, while MLON(p = 0.04) did not.
Manually tuned models (e.g., M(3)

LON, M(3)
METRIC, M(3)

DFC) gave similar results in terms of the model per-
formance. The AUC values tended to slightly decrease as the number of covariates increased, while
the AUC values stayed the same for MDFC and M(3)

DFC. The reason was that there were already three
covariates in MDFC as in M(3)

DFC. The deviances and test results were also almost identical. As a result,
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Table 3: Coefficients of the three penalized logistic regression models

Coefficients MLON MMETRIC MDFC
β̂ exp(β̂) β̂ exp(β̂) β̂ exp(β̂)

Demographics

Age −0.055 0.947 −0.071 0.932 −0.079 0.924
Education −0.169 0.845 −0.149 0.862 −0.141 0.869
ADAS 0.070 1.073 0.162 1.176 0.199 1.220
Gender(male) 0.583 1.791 0.490 1.632 0.411 1.508
APOE-ϵ4 0.679 1.972 0.647 1.910 0.606 1.833

FC Biomarkersa

L58,97 −0.107 0.898 - -
M211 - −0.011 0.989 -
Λ2,12 - - 0.070 1.073
Λ4,12 - - −0.095 0.910
Λ11,14 - - 0.193 1.213

a Selected FC biomarkers for each model.

the MDFC was better than other models in terms of classification performance and goodness-of-fit.

5.2. Selected FC biomarkers
5.2.1. LON

The estimated coefficients are presented in Table 3. With XL, the model MLON selected only one
variable, L58,97. It is the FC between the left calcarine fissure and the surrounding cortex (CAL.L) and
left anterior cingulate and paracingulate gyri (ACG.L). CAL.L is located on the inside of the occipital
lobe between the hemispheres, where the primary visual cortex is concentrated. The primary visual
cortex, found in the occipital lobe in both cerebral hemispheres, contains a complete map of the visual
field covered by the eyes. ACG.L is related to allocating cognitive resources to concurrent auditory
and visual information. The ACG and its neighboring areas are also known to be recruited during
conflict monitoring and attentional control (Botvinick et al., 2001; Shenhav et al., 2013). In previous
network analysis, (Wang et al., 2016) reported significantly altered betweenness centrality located in
CAL.R and ACG.L of MCI subjects compared to NC. Compared with the NC and MCI groups, the
nodal centrality in the AD population showed significant increase CAL.L (Yao et al., 2010). In our
results, the estimated odds of MCI multiply by exp(β̂L58,97 ) = 0.898 for each 1 unit increase in the FC
between CAL.L and ACG.L. The decrease in the FC of CAL.L and ACG.L affects the increase in the
transition to MCI and is consistent with the previous studies.

5.2.2. METRIC

The model MMETRIC, which was fitted by graph-theoretical metrics of 116 ROIs, selected only one
variable, M211. M211 was the PageRank of the right superior parietal gyrus (SPG.R), representing
the rank of SPG.R in terms of importance in the graph. The superior parietal lobule is one of the three
subdivisions of the parietal lobe, which is critical in manipulating information in working memory
(Koenigs et al., 2009). In the previous study, compared to the NC groups, a graph theory measure of
MCI showed a significant decrease in SPG.R (Liu et al., 2012). The estimated odds of being MCI
multiply by exp(β̂M211) = 0.989 for each 1 unit increase in M211 (1.1% decrease). Therefore, the
decrease in the PageRank of SPG.R affects the increase in the odds of having MCI.

5.2.3. DFC

For the model MDFC, three covariates were selected by the elastic net penalty. The selected covariates
involved 5 eigenvectors: the 2nd, 4th, 11th, 12th, and 14th eigenvectors. Hence, to interpret how the
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Table 4: ROIs mainly associated with the 5 eigenvectors
2nd eigenvector 4th eigenvector 11th eigenvector

(1) right inferior occipital gyrus dorsolateral area of left superior frontal
gyrus

orbital part of right middle frontal gyrus

(2) right middle occipital gyrus left middle frontal gyrus orbital part of right inferior frontal gyrus
(3) flocculonodular lobe of left cerebellum right supramarginal gyrus right inferior parietal
(4) left calcarine fissure and surrounding cor-

tex
triangular part of left inferior frontal
gyrus

dorsolateral part of right superiorfrontal
gyrus

(5) left gyrus rectus right insula
(6) right olfactory cortex right Heschl gyrus
(7) orbital part of left inferior frontal gyrus right rolandic operculum
(8) bilateral anterior cingulate and paracingu-

late gyri
(9) right Inferior parietal, but supramarginal

and angular gyri
12th eigenvector 14th eigenvector

(1) left precentral gyrus orbital part of left inferior frontalgyrus
(2) left rolandic operculum temporal pole of left superior temporal

gyrus
(3) right superior occipital gyrus left vermis 3
(4) dorsolateral part of left superior frontal

gyrus
temporal pole of the left middle temporal
gyrus

(5) left vermis 9 left cuneus
(6) left Heschl gyrus
(7) right angular gyrus
(8) right inferior parietal, but supramarginal

and angular gyri
(9) right Lenticular nucleus andputamen

selected covariates were associated with disease status, the 5 eigenvectors should be examined. Table
4 list the ROIs associated with each eigenvector.

The 2nd eigenvector had high weights on the 7 ROIs as in Table 4. They play central roles in
visual processing from the basic level to the higher level, such as face recognition (Mechelli et al.,
2000; Renier et al., 2010), and olfaction (Menini, 2009). The function of (5) is unclear but it may
be involved in higher cognitive function (Orrison, 2008). Therefor, the 2nd eigenvector represents
brain regions related to odor and visual information processing. The weights of the 4th eigenvector
had high values on the 4 ROIs, which were associated with the default mode network (DMN) and
cognitive execution network (CEN), memory and attention, and semantic tasks (Li et al., 2013; Ben-
Shabat et al., 2015). This eigenvector, therefore, would represent cognition related brain regions. The
11th eigenvector was mainly associated with the 9 ROIs related to integrative work of audio and visual
processing, language production, attention related tasks, DMN and CEN. This eigenvector could be
considered to play a role in processing and responding to external stimuli. The 12th eigenvector had
high weights on the 9 ROIs. The ROIs were related to motor skills, auditory processing, and language
functions from simple to complex levels (Blefari et al., 2017; Li et al., 2013; Warrier et al., 2009; Hall,
2010). Therefore, this eigenvector would represent auditory-motor integration. The weights of the
14th eigenvector were high on the 5 ROIs, where those ROIs were charge of reorienting to unexpected
stimuli, language, semantic processing, visual processing (Ardila et al., 2014, 2017; Coffman et al.,
2011). It implied that the eigenvector represented stimuli processing from unexpected to expected.

The estimated odds of MCI multiply by exp(β̂Λ11,14 ) = 1.213 for each 1 unit increase in Λ11,14; that
is, about 20% increase. It would imply that MCI had stronger connections among stimuli related brain
regions compared to NC. The estimated odds of MCI decrease by a factor of exp(β̂Λ2,12 ) = 1.073 as
Λ2,12 increases by 1 unit. It would suggest that MCI had a slightly stronger connection among brain
regions related to sensorimotor skills. The estimated odds of being MCI multiply by exp(β̂Λ4,12 ) =
0.910 for each 1 unit increase inΛ4,12. A weaker connection between cognition function and auditory-
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Figure 3: The functional connections of the shown pairs of ROIs were selected as important factors for classifying
MCI and NC groups.

motor integration was expected in MCI. In order to examine which connections were altered for MCI
compared to NC, we mapped the estimated coefficients from the eigenvector space to the original ROI
space. Figure 3 depicts the largest 1% regression coefficients in the ROI space, where the blue line
implies a weaker connection for MCI and the red line means a stronger connection for MCI. While we
could observe that various brain regions are involved in the altered connections, CAL.L and ACG.L
that were detected by MLON were also implicated. It suggested us that MDFC gave more encompassing
results. In conclusion, the highlighted biomarkers from MDFC were related to altered FC among brain
regions that were in charge of external stimuli processing, language functions, and sensorimotor skills.

5.3. Coefficients of demographic and clinical variables

In AD study, demographic and clinical variables have allegedly been considered to be critical factors.
Since AGE, APOE-4, Education length, Gender, and ADAS-cog score could be causing-factors of
AD, we added them as control variables to each model not to be penalized. Table 3 shows that the
signs of estimated coefficients were the same in the three models, indicating the same directions of
the effects on the probability of being MCI. Hence, we only focused on the variables from MDFC.
The coefficients showed the change in log odds due to incremental-unit changes in the predictors
(DeMaris, 1992). Also, logistic curves were plotted to visualize the effects of particular variables, as
shown in Figure 4. It showed that male subjects have lower predicted probabilities of MCI than female
subjects, overall. As the ADAS-cog score increases, regardless of gender, the predicted probability
of being MCI for subjects with 2 APOE-ϵ4 alleles tends to increase more sharply than for APOE-ϵ4
non-carriers. The rest of the logistic curves were in Appendix B.

The regression coefficients of Gender(Male = 1, Female = 0), APOE-ϵ4, and ADAS-cog demon-
strated the increments of these variables means the higher probability of becoming MCI. The regres-
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Figure 4: The logistic curves of ADAS-cog score stratified by APOE-ϵ4. The left and the right panels show the
estimated curves for males and females, respectively. The other covariates are fixed at their mean values.

sion coefficients of Age and Education demonstrated that decrements of these variables implied the
higher probability of becoming MCI. In our results, the estimated odds of being MCI multiply by
exp(β̂ADAS) = exp(0.199) ≈ 1.220 for each 1 score increase in ADAS (22% increase). The estimated
odds of being MCI multiply by exp(β̂APOE−ϵ4) = exp(0.606) ≈ 1.833 for each score also increase in
APOE-ϵ4 (83% increase). Many studies have shown that the prevalence of MCI increases with age
(Ganguli et al., 2013; Kryscio et al., 2006) However, our results were the opposite. The estimated
odds of being MCI multiply by exp(β̂Age) = exp(−0.079) ≈ 0.924 for each score increase in Age
(7.6% decrease).

6. Conclusions

In this work, we developed the pipeline for classification using FC. This pipeline can be applied to any
classification problem, where explanatory variables are symmetric matrices. Three different methods
were used to quantify FC and construct classification models using FC biomarkers as covariates.
Penalized logistic regression with the elastic net penalty was applied in the MCI classification to
simultaneously tackle model estimation and FC biomarker selection. We compared the performance
of three methods for the ADNI data. The AUCs of 69.22%, 75.81%, and 78.26%, for LON, METRIC,
and DFC, respectively. Therefore, in comparison with other alternatives, the MDFC showed higher
AUC value. From the ROC analysis, MDFC showed a better performance because its ROC curve was
the highest located one within a moderate level of specificity. We also found that the selected FC
biomarkers of DFC were related to cognition, stimuli processing, and sensorimotor skills.

The ADNI dataset could include heterogeneous MCI subjects. Diagnosis for MCI has followed the
criteria formulated by the Mayo Alzheimer’s Disease Research Center (Hänninen et al., 2002). How-
ever, the criteria usually depend on observations by clinicians, experience, and individuals subjective
reports. Accordingly, MCI patients might be categorized to be heterogeneous and show different brain
degeneration in disease progress that makes the early diagnosis challenging. Furthermore, there are
few studies in the identification of MCI converter and MCI non-converter. Therefore, our work may
have a possibility that heterogeneous MCI subjects are contained, so our results might not be reliable.
Consequently, more detailed criteria for segmenting MCI patients could improve the performance
results.

Longitudinal fMRI studies in patients with dementia have multiple challenges. Changes in the
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brain of NC and MCI have very weak signals to diagnose if a subject is cognitively normal or MCI
(Johnson et al., 2006; Li et al., 2011). BOLD signals are known to be variable across subjects because
fMRI techniques are quite sensitive to head motion. Due to those reasons, the classification between
NC and MCI is a more challenging problem in brain-imaging data. A multi-modal approach may im-
prove these weak points since the biomarkers based on brain-imaging modalities have complementary
information on fMRI (Rathore et al., 2017). However, brain-imaging is an expensive tool and thus
has limited accessibility as frontline screening and diagnostic tools for AD. It could be the reason for
subjects without fMRI information and accordingly cause a limited sample size.
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Appendix A: Abbreviations

AAL Anatomical automatic labeling

ACG.L Left Anterior cingulate and paracingulate gyri

AD Alzheimer’s disease

ADAS-Cog Alzheimer’s Disease Assessment Scale-Cognitive Subscale

ADNI Alzheimer’s Disease Neuroimaging Initiative

APOE Apolipoprotein E

AUC Area under the ROC curve

BOLD Blood oxygen level-dependent

CAL.L Left calcarine fissure and surrounding cortex

CCA Common component analysis

DFC Dimension-reduced Functional Connectivity

DICOM Directed Components

FC Functional connectivity

fMRI Functional Magnetic Resonance Imaging

LON Low-Order functional Network

LOOCV Leave-One-Out Cross-Validation

MCI Mild cognitive impairment

MRI Magnetic Resonance Imaging

NC Normal control

PET Positron emission tomography

ROC Receiver operating characteristic

ROIs Region of interests

rs-fMRI Resting-state fMRI

SPG.R Right superior parietal gyrus
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Appendix B: Adjusted logistic curves of a continuous covariate stratified by a
categorical covariate

Figure B.1: Logistic curves of gender variable.
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Figure B.2: Logistic curves using APOE-ϵ4 as a categorical variable (Male).
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Figure B.3: Logistic curves using APOE-ϵ4 as a categorical variable (Female).
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